

EFECTO ESTABILIZADOR DE DISTINTOS COADYUVANTES SOBRE MEZCLAS INESTABLES DE AGROQUÍMICOS

Ensayo de Laboratorio.

ESTUDIO DE AGRONOMÍA GIRAUDO - EULA

ING. AGR. RAMOS NICOLÁS, ING. AGR. GIRAUDO CRISTIAN, ING. AGR. EULA NESTOR, ING. AGR. PICCA KEVIN

Objetivo del Ensayo:

Evaluar el comportamiento de diferentes coadyuvantes como estabilizantes en mezclas con problemas de estabilidad física y química.

Condiciones del Ensayo:

Para evaluar la estabilidad de la mezcla, se aplicó un protocolo en cuatro fases sucesivas, diseñado para someterlas a condiciones cada vez más exigentes hasta detectar algún signo de inestabilidad.

- Fase 1: Cada mezcla se diluyó inicialmente en 40 litros de agua, con una dureza de 160 ppm de CaCO₃. Si bajo esa condición la mezcla alcanzaba un grado de estabilidad 3, 4 o 5 (es decir, aceptable o estable), se avanzaba a la fase siguiente.
- Fase 2: Se preparaba nuevamente la misma mezcla, pero en una concentración mayor, equivalente a una dilución en 20 litros de agua.
- Fase 3: Si la mezcla continuaba mostrando estabilidad (grado 3, 4 o 5), se volvía a preparar, ahora en 40 litros de agua con alta dureza (920 ppm de CaCO₃).
- Fase 4: Finalmente, si todavía se mantenía estable, se ensayaba en 20 litros con agua dura

Este diseño buscó **forzar condiciones críticas** que permitieran revelar inestabilidad en la mezcla. La fase en la que por primera vez se observaba separación de fases o pérdida de homogeneidad se definió como **Fase Crítica**.

Una vez identificada esta fase, se volvió a preparar la mezcla bajo esa condición, incorporando en primer lugar los distintos coadyuvantes evaluados, con el objetivo de analizar su efecto estabilizador.

Evaluación de Estabilidad

Se utilizó una escala visual adaptada del Centro Brasileño de Bioaeronáutica

	1		
	1		4
1	_	_	
			Z.
1	_		
,			

Grado	Condición	Resultado
1	Separación inmediata	No aplicar
2	Separación después de 1'	No aplicar
3	Separación después de 5'	Agitación continua
4	Separación después de 10'	Agitación continua
5	Estabilidad perfecta 30'	Sin restricción

Coadyuvantes Evaluados

- A: EMAG modificado (Impact) 50 cc/ha
- B: EMAG + emulsionantes + tensoactivos 250 cc/ha
- C: EMAG + propionato de amonio (Carrier) 30 cc/ha
- D: EMAG + siliconas 250 cc/ha
- E: EMAG + alcohol graso etoxilado 500 cc/ha
- F: Buffer 400-600 cc/ha (sólo en mezclas con incompatibilidad química)

Resultados Generales

Incompatibilidades físicas:

- * Los coadyuvantes A (Impact) y B (EMAG + tensioactivos + siliconas) recuperaron la estabilidad en 57,14 % de las mezclas.
 - * C y E revirtieron el 14,29 %.
 - * D no mostró eficacia.

- Incompatibilidades químicas:
- * El F (Buffer) corrigió el 100 % de los casos.
- * A, B, D y E recuperaron el 50 %.
- * C el 25 %.

Conclusiones

- Los coadyuvantes A (Impact) y B (EMAG + tensioactivos + siliconas) fueron los más efectivos para resolver incompatibilidades físicas.
- El Buffer (F) resultó imprescindible en incompatibilidades químicas, con un 100 % de efectividad.
- La correcta elección del coadyuvante es clave para asegurar estabilidad en mezclas complejas de agroquímicos.

Beneficios

- · Mayor seguridad en la preparación de caldos de pulverización.
- · Reducción de riesgos de corte de caldo y obstrucción de equipos.
- · Optimización del control de malezas al mantener la eficacia de los principios activos.

Posibilidad de ajustar el coadyuvante a la mezcla específica según el tipo de incompatibilidad.